ES-3715

M. A./M. Sc. (Fourth Semester) Special Examination, 2020 MATHEMATICS

Paper: Tenth

(Sobolev Spaces)

Maximum Marks: 35

Note: Attempt all questions. Each question carries equal marks.

- 1. Let Ω be an open subset of \mathbb{R}^n show that the $T \in D'(\Omega)$ and define convolution of function.
- 2. State and prove Planchorel theorem.
- 3. Prove that $C_0(\Omega)$ is dense in $L^P(\Omega)$ if $1 \le P < \infty$.
- **4.** Let $U \subseteq \mathbb{R}^n$ be bounded set, ∂U admits a locally continuously differentiable parametrization and $u \in W^{K,P}(U)$, for $1 \le P < \infty$. Then show that there exist a sequence $\{u_n\}$, $u_m \in C^{\infty}(U)$ such that $\|u_m u\|_{W^{K,P}(U)} \to 0$.
- 5. Let Ω be a half space in \mathbb{R}^n . Then prove that there exist a total extension operator E for Ω .